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Half-range completeness theorems are proved for eigenfunctions associated to 
the one-dimensional Fokker-Planck equation in a semi-infinite medium. Exis- 
tence and uniqueness results for perfectly absorbing, partially absorbing, and 
purely specularly reflecting boundary conditions are deduced for the stationary 

�9 and time-dependent problems. Similar results are obtained for a slab geometry. 

KEY WORDS: Fokker-Planck equation (stationary and time dependent); 
boundary conditions (perfectly absorbing, partially absorbing, purely spec- 
ularly reflecting); half-range completeness; semi-infinite medium; slab ge- 
ometry. 

1. INTRODUCTION 

The problem of determining the distribution function for a Brownian 
particle in the one-particle phase-space when an absorbing boundary is 
present goes back to Wang and Uhlenbeck, (l~ who acknowledged the 
difficulty of obtaining a rigorous result and proposed a more straightfor- 
ward approach. 

Burschka and Titulaer (2'5~ and Harris (4-6) attacked the problem anew, 
in connection with the kinetic boundary layer solution of the Fokker- 
Planek equation (FPE) for several geometries and boundary conditions 
(BC). The practical interest of the problem comes from the theory of 
reaction rates and diffusion-controlled reactions, where the FPE sometimes 
provides a more accurate description than the commonly used diffusion 
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equation (DE). (7) Indeed, the diffusion description is limited to the coordi- 
nate space and is supposed to be valid only outside the boundary layer 
regions. Moreover, the BC for the DE cannot be strictly correct, as they 
cannot distinguish between incident and emergent particles. Therefore, a 
more complete description, which takes into account the full position- 
velocity dependence is provided by the FPE, for which purely absorbing (2~ 
or mixed (specular plus diffuse reflection) (3~ BC have been imposed. But, as 
already pointed out in Ref. 1, this turns out to be a delicate problem which 
has until now resisted attempts at rigorous solution. The main reason for 
this seems to be the lack of a half-range completeness theorem for the FPE. 
Instead of this, Burschka and Titulaer (2'3) use numerical methods based on 
the conjecture that such a theorem is valid, while Harris (4-6) adopts a more 
ad hoc procedure based on the ansatz that the solution has an explicit 
half-range character and even a given form, obviously satisfying the BC. 

The aim of this paper is to provide the missing half-range completeness 
theorem for the FPE and to prove existence and uniqueness for various BC. 

Theorems of this type have been known for some years for the neutron 
transport equation (8-1~ and for BGK model, (~1't2) where special explicit 
techniques were available. A unified abstract approach to a general "for- 
ward-backward" evolution equation was given by Beals (13) but was applied 
incorrectly to the half-range completeness problem (14) corresponding to 
perfectly absorbing BC. The authors are indebted to the referee who 
prevented them from repeating that error here. We apply the method of 
Ref. 13 with more care and extend it to other BC, to obtain the physically 
reasonable and mathematically correct results for the FPE. The case of a 
semi-infinite medium is considered in detail, while the slab geometry is 
discussed in the last section. 

Besides providing a test for the approximations used in previous 
approaches, the half-range completeness theorem would permit, in princi- 
ple, the determination of the exact boundary layer solution for the problem 
at hand and, conseqently, funish a deeper understanding of the diffusion 
approximation for the FPE. 

2, STATEMENT OF THE PROBLEM 

The steady one-dimensional Brownian motion of a classical particle of 
mass m in an isotropic fluid, in thermal equilibrium at the temperature T, 
can be described by the stationary FPE 

= - -  - -  + y  v +(x , v )  + J ( x , v )  (1) V ~ x  +(X'V) Y m Ov 2 
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where J ( x ,  v) is the source term. The range of the velocity v is N, while the 
position x will be restricted to the right half-axis x > O. For simplicity, and 
without loss of generality, we shall take the friction coefficient y - -  1 and 
k T / r n  = 1. At the wall x = 0 we impose one of a family of boundary 
conditions 

(0, v) = ~ ( 0 ,  - ,~), v > 0 (2) 

where c~ is a parameter,  0 < a < 1. The extreme case c~ = 0 is the perfectly 
absorbing boundary,  (2) while a = 1 describes pure specular reflection. (3) 
These conditions must be supplemented by a condition far from the 
boundary x = 0. For a source which decays as x---> m, one expects a 
solution which is close to the spatially homogeneous solution, i.e., 

lim ~(x ,  v ) =  ce -v2/2 (3) 
X - ~ O O  

where c is a constant which should be determined from the source term and 
the BC at x = 0. 

We shall give this problem a more precise formulation (by specifying 
appropriate function spaces to which the source term and the solution 
should belong) and show that it has a unique solution when 0 < c~ < 1. 
When a = 1 the problem has a solution if and only if the source term 
satisfies a (single) linear constraint, in which case the solution is unique up 
to the addition of an equilibrium solution de -v2/2, d constant. 

After the transformation ~ = fe-vV2, Eq. (1) reads 

T ~-~f x + A f  = s (4) 

where (Tf)(x ,  v) = vf(x,  v), Af (x ,  v) = - Off(x, v) /Ov 2 + v Of(x, v)/Ov, and 
s(x,  v) = f ( x ,  v)e ~/2. The boundary conditions (2), (3) take the form 

and 

f(0, v) = of(0, - v ) ,  v > 0 (5) 

lim f ( x , v )  = c (6) 
X ~  

It is convenient to replace f by f -  c; moreover we may easily consider 
inhomogeneous BC. Then Eq. (4) is unchanged, while (5), (6) become 

f ( O , v ) - a f ( O , - v ) = ( c ~ - l ) c + g ( v ) ,  v > 0  (7) 

and 

lim f ( x ,  v) = 0 (8) 
X ---) Or ~ \  / 

Again, c is a constant to be determined, and g is a given function. 
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For a precise formulation we introduce the 
valued functions on the line N: 

= L2(R;  do), d~(v) = 1 

~ r  = L2(•; Ivl do) 

with their corresponding inner products and norms 

(u,w) = f~_~ u(v)w(v)d~(v), lu[ = (u,u) ~/2 ( l l)  

(u,w)r= f_~lv[u(v)w(v)do(v),  [u[r=(u,u)lr/2 (12) 

We consider also spaces of functions of x ) 0 with values in ~f~r, particu- 
larly 

L2(a+ ; O~FT), L ' ( a + ; ~ r ) ,  Co(a+'~[gPg) (13) 

The first of these three spaces can be identified with the function space 

(14) L2(a+ xa,  Ivl & ao(v)) 

and the second with the space of functions f with 

oo ~ 2 dx< 

Hilbert spaces of real- 

e-~2/2dv (9) 

(10) 

The third space in (13) is the space of functions continuous for 0 < x < oe 
with values in ~ P r ,  and vanishing at oe: 

lira ( ~  [ f l y ,  v) - f(x ,v)]2[vldo(v)  = 0 (16) 
y-~,xj_oo'- 

lira (-o~ f(x,v)Z]v[do(v ) = 0 (17) 
x-~oo J--oo 

For a function f ~ C O (R+; ~f ' r )  the boundary condition (7) has a sense 
and (17) may be taken as a precise form of the condition (8). We consider 
Eq. (4) in the sense of distributions. 

The following result is proved in Section 6 below, after preliminary 
results in Sections 3-5. 

Theorem 1. Suppose g is in ~ ~  T and suppose v-  is(x, v) = sl(x, v) is 
such that 

S 1 e L I ( R + ; ~ P T )  A L2(R+ ;~;gfr), xs 1E L I ( N + ; H r )  

When 0 < a < the problem (4), (7) has a unique solution f which belongs 

(15) 
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to C0(R+;;gg~r) and  such that  Of/Or belongs to L 2 ( R + ; 2 ~ ) .  When  ~ = 1 
the solution exists if and  only if s satisfies a certain linear constraint ,  and  
again it is unique. 

[Note that  when ~ - -  1, in the formula t ion  (5), (6) a solution is only 
unique up to addi t ion of a constant.]  

The  funct ion spaces here are not  chosen arbitrarily;  they occur  natu-  
rally in the var ia t ional  approach ,  as in Ref. 13. 

3. A FORMAL SOLUTION; THE HALF-RANGE 
COMPLETENESS QUESTION 

In  connect ion  with the opera to r  occurr ing in Eq. (4) it is natural  to 
consider  the "eigenvalue p rob l em"  

Au.(v)  = 2t.VUn(V ) = 2t. TUn(V ) (18) 

in which we note the interplay between 2t. and  the mult ipl icat ion opera-  
tor T. 

In his deve lopment  of the full-range theory for the FPE,  Pagani  (~5) 
calculates explicitly the eigenvalues and  eigenfunctions.  The  eigenvalues are 
)t o = 0 and  X_+. = +~/n, n = 1,2,3 . . . . .  while the eigenfunct ions are 

u o = C o and  

(v ) u+_n(v ) = Cne+-VVnHn 7- ~ - ~/2n , n = 1,2 . . . .  (19) 

where the H n are the Hermi te  polynomials ,  and  the constants  C n will be 
chosen later. As we shall see, these funct ions together with v are complete  in 
the space ;~f~r of (10). 

Cor responding  to a source term s we consider s~ = v -  ~s and  assume s~ 
belongs to L t ( R + ; ~ r ) .  Then  s I has an expansion 

s,(x, v) = & ( x )  + •,(x)v + 2 bn(x)"n(v) (20) 

We look for a solution of (4), (7), (17) which belongs to C 0 ( R + ; ~ r ) .  I t  
should have  an expansion 

f ( x , v )  = % ( x )  + Ogl(X)�9 --1-- ~an(X)Un(X ) (21) 

NOW in view of (18) and  the fact that  A 1 = 0 and  Av = v, we see that  (4), 
(20), (21) yield the system of equat ions 

~(x )  =/~,(x), ~;(x) + ~,(x) = &(x) 
(22) 

<(x)  + ~na~ = bn(x) 

Taking  into account  the bounda ry  condi t ion (17) we see that  %,  cq, and  a n 
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for n < 0 (i.e.,)t~ < 0) are uniquely determined by (22): 

fx ~ 
O~l(X ) = -- ~ l ( y )  dy (23) 

x 

 0(x) -- r 1 dy (24) 

an(X) = -s176 Xn < 0 (25) 

For n > 0, on the other hand, we obtain 

an(x ) = ane -~'x + s Xn > 0 (26) 

where the constants a n, n > 0, remain to be determined. The boundary 
condition (7) requires 

~ , a . [ u n ( v ) - a u n ( - v ) ] = c ( a - 1 ) + h ( v  ), v > O  (27) 
n>0 

where h(v) is the function 

g(v) - %(0)(1 - a) - al(0)(1 + a ) v -  2 an(O)[u.(v) - ~ u n ( - v ) ]  (28) 
n<0 

and e is a constant to be determined. Thus our problem has (formally) been 
reduced to solving (27) for a known function h and an unknown constant c. 
The question of the existence and uniqueness for 0 < a < 1 is thus the 
following half-range completeness question: are the functions 

1, un(v ) - aun(-  v), n > 0 (29) 

independent and complete among the functions defined on {v > 0}? A 
more precise version is: does every function h ~ L2(N+ ,vdo(v)) have a 
unique expansion in the functions (29), with this expansion converging in 
this Hilbert space? We shall show that the answer is yes and that the 
procedure above can indeed be used to prove Theorem 1. 

4. THE EXISTENCE OF EIGENFUNCTIONS; THE OPERATOR S 
AND THE SPACE ~ s  

The operator A = _ ( ~ / ~ ) ) 2 ~ _  t~O/~v is formally self-adjoint in the 
Hilbert space ~ introduced above. It has a complete set of eigenfunctions 

I~)n(I~ ) = C/~H,~(2-~/2v), n = 0, 1,2 . . . .  (30) 

Again the H n are the Hermite polynomials and the corresponding eigenval- 
ues are/~n = n.( t6)  W e  normalize so that 

(l~n ,fPm) = ~nrn (31) 
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In part icular  

1 q90(~) ) ~-- l, ~1(/9) = D, ~2(V ) = " ~  (~92_ l) (32) 

We would like to consider (18) in the s tandard eigenvalue form 
A - 1Tu,~ = ~ -  lu,,. Yet the operator  A is not  invertible; it is convenient  then 
to replace it with the operator  

A 1 = A + P (33) 

where P is the or thogonal  projection of ;Yf onto the multiples of the 
funct ion v2: 

Pu = (u, v2)(v 2, v 2) - lv2  = �89 (u, v2)v 2 (34) 

Since v 2 is a linear combinat ion  of epo and q02, 

A 1~01 = ACpl = r A l~n = Aepn = ncp~, n >/3 (35) 

For  the time being, we res t r ic t 'a t tent ion to the space ~ 0  of finite 
combinat ions  of the cp,, i.e., the space of polynomial  functions of v. This 
space is invariant  for A, A 1, and T. We introduce an inner product  

(U,W)A = ( A , u , w )  = (Au, w) + (Pu, w) (36) 

An integration by parts and use of (34) gives 

( ) + (U'W)A = d v '  dv -3 

In particular, (u, U)A = 0 implies u = 0. We define the norm 

lulA = (u, u)~/= (38) 

On the span of {q0,; n >/3} we have lul  = (Au, u) >~ 31ul 2. Since a similar 
inequality is valid on the span of (epo, q01,q~2), we obtain an estimate 

lul < ClulA (39) 

Looking at these same two subspaces, we see that A 1 is invertible as an 
operator  in ~ o .  We let 

S = A 1- IT (40) 

Let  ~ A  denote  the complet ion of ~ 0  with respect to the norm (38). 
In view of (39), ~ A  may  be considered as a subspace of ~ ;  in view of 
(37) it can be shown to consist precisely of those u E ; ~  such that the 
(distribution) derivative d u / d v  is also in ~'~: 

~f'~.4 = ( u ~ ~ : du / dv ~ ;Yf ) (41) 
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Proposition 1. The opera tor  S extends to a compac t  self-adjoint 
opera tor  in ~f~A. 

Proof. S is symmetr ic  on ~;f%: 

( Su, W)A = ( Tu, w)--  (u, Tw) = (u, SW)A (42) 

An integrat ion by parts  gives the identi ty 

Irwl 2 = Iwl 2 + 2(Tw, dw/dv)  < Iwl 2 + 21Zwl IwlA (43) 

F r o m  (43), (39), and  the inequali ty 21st I < �89 a + 2t 2 we obtain  

ITw[ < C'lwlA (44) 

It  follows f rom (42), (44), and  (39) that  S extends to a bounded  self-adjoint 
opera tor  on ~;~A �9 To  show that  S is compact ,  it is enough to show that  the 
no rm of its restriction to span { %:  n/> m } tends to zero as m ~ m.  But for 
u in this span  and  m/>  3 we obta in  f rom (42) and  (44) that  

1 I(Su, w)~ I <. lullrw I < C'lullwl~ <. udC' lulAIwl~ (45) 

since for such u, lu[  = (Au, u) >>. mlul 2, 
The identi ty (42) with w = Tu implies that  if Su = 0 then u = 0. 

Therefore  the compac t  self-adjoint opera tor  S has a complete  set of 
eigenfunctions in ~PA,  with nonzero  eigenvalues. Consider  first the two- 
dimensional  subspace 

;gf~ = span { 1, v } = span { fl00 , qo t } (46)  

Note  that  A l 1 -- P 1 = v2/3 and A iv -- Av = v. Therefore  Sv = A ~ lv2 = 1 
and S 1 = A ~-lv = v, so Yg~A is invar iant  for S and  contains the eigenfunc- 
tions 

q0_+ = C•  (,/3 + v) (47) 

with eigenvalues X+ = + `/3; the normal iza t ion  constant  C+ will be chosen 
later. I t  follows f rom our computa t ion  of A l l  and  A lv that  the or thogonal  
complemen t  of ~ in J4,~A is the space 

~f~' = (u ~ Y-UA : (u,v) = (u,v 2) = 0} (48) 

Since ~P~' is invar iant  for the compac t  self-adjoint opera tor  S, it contains a 
complete  or thogonal  set of eigenfunctions {u,) .  For  these eigenfunctions 
we have  

Au, = ;t, Tu, (49) 

In  fact  the eigenfunctions clearly satisfy this equat ion (at least in the sense 
of distributions) with A replaced by  A 1. But since u ~ ;vg~ ' implies (u,v 2) 
= 0, we have  A -- A 1 on ;Vf~'. We  order  the eigenvalues with 

. x~  > 0, IXll IX21 . - .  (50) 
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Let R be the reflection operator: 

Ru(v) = u ( -  v), v E N  (51) 

It is easily seen that A R  = RA,  TR = - RT,  and u n = Ru_  n. This argument 
produces the desired complete set of eigenfunctions and shows that there 
are infinitely many eigenvalues of each sign; of course these are the 
eigenfunctions computed by Pagani. ('5) 

We conclude this section by introducing one more inner product and 
corresponding norm, and by normalizing the eigenfunctions of S. Corre- 
sponding to the self-adjoint operator S in ~/'n is the operator 

ISl = ( 8 * 5 )  '/2 (52) 

characterized by 

I S l u n = l X . l - l u . ,  I s l ~ + = l x _ ~ - ' l  ~0_+ (53) 

For u, v E ;~f'A we define 

= = ~,/2 (54)  (u,v) s (ISlu, v)A, luls (u,u,s 
Finally, we normalize the eigenfunctions by requiring 

In, is = 1 = I~0+ Is (55) 

Note that 

lul  = (A,ISlu, u) = ( A , I A ( ' T l u ,  u) (56) 

lul  = (ITlu, u) (57) 

where [T[  = (T 'T)  1/2 is multiplication by Iv I. Thus we can hope for a 
relationship between these norms. 

P r o p o s i t i o n  2. There is a positive constant m such that for every 

u ~Jg~0, 

m - l l u l s  < lulT ~ mluls  (58) 

In particular, (58) means that ~f~r, which can be taken to be the 
completion of S o  with respect to the norm ] ]r, coincides with ~ s ,  the 
completion of JC'b with respect to ] Is- Proposition 2 is a necessary but 
technical point whose proof is indicated rather cryptically in Ref. 13; we 
give a more detailed proof in the Appendix below. 

5. PROJECTIONS; PROOF OF HALF-RANGE COMPLETENESS 

To formulate and prove half-range completeness for the eigenfunctions 
of S, it is convenient to introduce certain orthogonal projections. In ~ r  
there are natural complementary orthogonal projections Q+,  Q_ defined 
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by 

Q+u(v)=O, v<O, Q+u(v)=u(v) ,  v > O  (59)+ 

Q_u(v)=u(v) ,  v<O, Q_u(v)=O, v > 0  (59)_ 

Then clearly 

TO+=Q+ T, T O _ = Q _ T ,  ]TI= T ( Q + - Q _  ) (60) 

The analogous projections for the operator S in J4F s = ~r are the 
complementary orthogonal projections P + ,  P_ defined by 

P+ u = (u, qg+ )scp+ + ~ (u, Un)sU . (61)+ 
n > 0  

P_ u = (u ,~_) f f_  + ~ (u.U.)sU . (61)_ 
n<O 

Then 

s P + = e + s ,  s P _ = e  s, I S l = S ( e + - P _ )  (62) 
Consider now the half-range completeness question as posed at the 

end of Section 3, for the case a = 0. If we replace the constant function 1 
by q~+, the question is whether Q+,  considered as operating from 
P+ (~f~s) to Q+ ( ~ r ) ,  is onto and has a bounded inverse. One may pose 
the analogous question for Q_ and P_ (indeed it is equivalent, by symme- 
try) and it is clear that the two questions together are the question whether 

V =  0+  P+ + Q-  P -  (63) 

is onto and has bounded inverse as operator in ~f~T = ~ S  �9 Similarly, let R 
be the reflection operator (50). If again we replace 1 by ep +,  the half-range 
completeness question for 0 < a < 1 can be settled by considering the 
operator 

V~ = Q+ (I - aR )P+ + Q_ (I - aR )P_ (64) 

Proposition 3. 
onto from ~ef s = Y r  to itself, with bounded inverse. 

For 0 < a < 1 the operator V, is one-to-one and 

For example, 

( Q+ u,P+_w)r= +-( Q+ u,P+W)s 
(65) 

(Q_u,P+_w)r= T-(Q_u,P+W)s 

( Q+ u,P_w)r=(TQ+ u , P _ w ) = (  Q+ u, TP w)=(  Q+ u,A~SP_w) 

= - ( Q +  u,A,]SIP_ w) = - ( Q +  u,P_ W)s (66) 

Proof. We use the four identities 
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Let 

W = Q + P _  + Q _ P +  (67) 

Then using (65) we obtain the identity 

I Vul~ = iu l~  + I Wul~ (68) 
which implies [because of (58)] that 

IVul~ >~ 81ulw + IWulT (69) 
for some 6 > 0. It follows that V is one-to-one and has closed range, since 
convergence of Vw m implies convergence of wm. If V is not onto, then there 
is w ~ Y T  which is orthogonal to the range, with w :/: 0. But then, using 
(65), we obtain for all u ~ ; ~ s ,  

O = ( V u ,  w ) r = ( u , V ' W ) s ,  V ' =  P+ Q+ + P _  Q_ (70) 

Now V' and W' = P+ Q_ + P_  Q+ satisfy the identity analogous to (68); 
thus (70) implies V'w = 0 which implies w = 0. This proves the assertion for 
V= Vo. 

For the remaining cases we note that the reflection operator clearly 
satisfies 

RQ+ = Q_ R, R Q _  = Q+ R (71) 

The discussion in the proof of Proposition 1 implies 

RP+ = P_ R, R P _  = P+ R 

Moreover, R is unitary in Y s  and Y T .  Then 

V~ = V -  a R W  (72) 

and from (69) we obtain 

IV~ulT >~ IVulT-- '~IWulT >~ 81Ulw (73) 
Thus V~ is one-to-one and has closed range. Again, if w is orthogonal to the 
range of V, in Y T ,  then (V '  + o~RW')w = 0 and as before we conclude 
that w = 0 and that V, is onto with inverse having norm < 8 -1. II 

As noted, we have now solved the half-range completeness problem for 
0<a-<< 1 with q0+ in place of 1: in fact since {q~+,un; n > 0 }  are a 
complete orthonormal set in P+ ( J f s ) ,  we have shown in effect that any 
h E Q+ ( Y r )  has a unique expansion in the functions { Q+ (I  - c~R)cp+, 
Q+ (1 - aR)u  n, n > 0} which converges in Y r .  Let 

K~ = closed linear span of { Q+ (1 - aR )un, n > 0} (74) 

in Q + ( Y r ) -  Then K~ has one-dimensional complement, and we may 
replace Q + ( I - a R ) q > +  in the expansion by some other function X 
E Q+ (~EFT) if and only if X is not in K s. In particular we would like to 
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use Q + ( 1 -  aR)l = ( 1 -  a)Q+ 1. This is not possible when a = 1. For 
0 < a < 1 the question is whether Q+ 1 belongs to K,.  Thus the following 
completes the solution of the half-range completeness question as posed at 
the end of Section 3. 

Proposition 4. Q + l i s n o t i n K ~ , 0 < a <  1. 

Proof. Suppose h E span{u,, n > 0). Then P+ h = h and so using 
(65) again we obtain 

(Th, h) = ( (Q+ - Q _ ) h , P + h ) r =  ( (Q+  +Q_)h ,h ) s  

= ( h , h ) s =  Ihl~ (75) 

Similarly P Rh = Rh, so 

( TRh, Rh ) = -[Rhl2s = -Ihl2s (76) 

(TRh, h) = (( Q+ + Q_ )Rh, h)s= (Rh, h)s= 0 (77) 

Moreover, g = (I - aR )h is in ~ ' ,  so 

(g,v) = (g ,A,1)  = (g, 1)A= 0 (78) 

We combine these observations to obtain a positive lower bound on the 
distance from Q + g to Q + 1, thereby proving the assertion. In fact 

2[ Q+ ( g -  1)] 2 = ([ Q+ + Q_ + Q+ - Q _ ] I T I ( g -  1), g -  1) 

= ( I Z l ( g -  1), g -  1) + ( Z ( g  - 1), g -  1) 

= ] g -  112+ (Tg, g ) -  2(g,v)  + (v, 1) 

= l g - l l ~ + ( T g ,  g) 

= I g -  112 + ( r ( h  - ~Rh) ,h  - ~Rh)  

= I g -  112+ Ihl 2 - cd[hl2s 

> Ig - 112/> a ' l g  - ll~ = a ' ( lg l~ + 1112) 

/> 8'111~ = 6" > 0 (79) 

6. PROOF OF THEOREM 1 

We begin with a resum6 of the results of the preceding two sections. 
The functions { q0_+, u n ) are an orthogonal basis for the space ~ T  = ~ s  
with respect to the inner product (54). Now span{1,v} = span{cp+ ,q~ }. 
Therefore any element u of ~ T  has a unique convergent expansion 

u = a o + alv + ~ a , u ,  (80) 
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Moreover 

and clearly 

(81) 

C-,(ol2 + ~2) < 1% + ~ < C( ~2 + ~2) (82) 
Moreover, for 0 -<< a < 1, if h is in / ~ r ,  then there is a unique u~ in the 
closed linear span of { 1, u n, n > 0} such that 

Q+ (u,~ - aRu,~) = - Q+ h (83) 

The norm of u s is dominated by that of h. 
We can now justify the procedure of Section 3. Suppose first that 

s 1 : [0, ce] ~ ~ r  is continuous, vanishes for large x, and takes values in the 
subspace spanned by 1, v, and (un; In[ < N) .  Then the expansion (20) is 
finite and the coefficients are continuous and vanish for large x. The 
functions a l, a 0, and a n for n < 0 are then determined by (23)-(25). In 
order to pass to more general functions s I by a limiting argument, we need 
to obtain estimates independent of N and independent of the continuity 
and vanishing assumptions. Set 

Mx(S1) ~" fxOO(1 + y)lsI(Y' ")iV@ + [ ~OOls,(y,. )12r dY ],/2 

M(s 0 = Mo(s,) (84) 
In what follows the constant C varies from inequality to inequality but 
depends only on ~. From (23)-(25) and the Cauchy-Schwarz inequality we 
obtain, using (81), (82), the inequalities 

I,~(x)l <~ ~lB,(y)ldy<. C f~ls,(y,  ")lrdy (85) 

= - x)l z,(z)l dz +  o(y)i + 

< Cfx~(1 +y)[s~(y,-)lrdy (86) 

2 n~<oan(x)2<~(o~~176 b.(y)dy 

<~ C fx~lS,(y, -)l~dy (87) 

In particular, the function h defined by (28) satisfies 

Ihls < CM(s 0 (88) 
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The boundary condition (27), which is (83), determines unique constants a n 
and e, and we have 

c2 + E a,2< C[M(s t )  2 + ]g]~-] (89) 
n > 0  

The equations (26) then determine functions a,(x) for n > 0. Looking at the 
two terms separately, splitting the integration into an integral from 0 to �89 x 
and from �89 x to x, and using the Cauchy-Schwarz inequality, we obtain 

-2~x 2 + e-aX X/2b,(y)2dy + (90) a,(x) 2 << C e a, 

where 6 -- inf[Xn[. Therefore 

2 an(x)2< C{e-SX[M(s,)2+lgl2r+ M~(sl)2]} (91) 
n > 0  

Note also that the functions an(x ) are all continuous. It follows from 
(85)-(87) and (91) that the series on the right in (21) converges in ~ r  for 
each x > 0 and defines an element f of the space C0(N + , ~ r )  of continu- 
ous ~f~r-valued functions vanishing at infinity. Moreover because of the 
nature of the estimates, we may pass to the limit and obtain f so long as 
M(s 0 is finite. 

Suppose therefore that M(sl) is finite and that f ~ C0(N+ ,JC~v) has 
been obtained as above. The individual coefficients satisfy the equations 
(22) a.e. and are absolutely continuous, so by considering partial sums and 
passing to the limit we obtain the desired equation 

v ~ + Af = s (92) 

in the sense of distributions, where s = vs t. A similar passage to the limit 
justifies the following calculation: 

s oi ) = ( s , f ) g x -  V~x ,  f dx 

= (s, f )  dx - g dx  (vf, f )  dx 

foo l 2 = (s , f )dx+ g oovf(O,v) do(v) (93) 

Taking into account the boundary condition (7), 

f'_~vf(O,v) 2 do(v)= ( 1 -  a2)s + s (94) 
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Therefore (93) and our earlier estimates give 

Of 2dx ;oo <';o 
<s ")lrl/(x, .)lTdx+ Igl~- < f lU(s , )  2 + Igl~] (95) 

This completes the proof of Theorem 1, in the cases 0 < a < 1. 
When a = 1 we construct the functions al,ao,a., n < 0 as before, 

giving h. Now the necessary and sufficient condition for solvability of the 
boundary condition (27) is that h lie in ~ . =  1, the closed linear span of 
(Q+(u . -Ru . ) ,  n > 0 } .  Jz / .=l  has codimension 1 in Q+(~r) ,  so if 
x ~ Q+ ( ~ r )  is chosen orthogonal to s 1, the condition is 

s >oVX( v)h ( v) dv= 0 (96) 

Since h depends linearly on s 1 = v-is, this is a linear constraint on s~. 
When the constraint is satisfied, the argument proceeds exactly as before 
and we obtain the unique solution f. 

If (96) is satisfied, then (1) has a solution (necessarily not unique). Let 
us integrate (1) over dvdx, taking into account (7) with a = 1. We get 

oo 2 2 oo 

If we require physical (i.e., nonnegative) sources and incoming distribu- 
tions, this relation implies g = J = O. We notice that the integrations 
above are allowed: the hypotheses in Theorem 1 that g E ~ r  and s 1 

LI(R+ ; ~ r )  imply vg(v)e-v2/2 ~ LI(~+ ) and J ~ LI(R+ )K R). 

, THE TIME-DEPENDENT PROBLEM 

The full time-dependent problem corresponding to the stationary 
problem above is 

I( v) ~v (X,V,t) + Vg;x vo-~]f(x,v,t)=O, x , t>O 

f(x, v, O) = fo(x, v) 
f(O, v, t) = af(O, - v, t), 

We write this problem as 

0f 0-t + L f =  0, t > 0  

fl,=0 =/0 

v, t>O 

(97) 

(98) 

(99) 

(lOO) 

(lOl) 
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where L is the operator TS/Ox  + A whose domain consists of those 
functions f from [0, m] to ~r such that 

f E L2(R+ ; ~ )  71 C0(R + ; ~ r )  
(102) 

Of ~ L=(R +" ~Yf), Q + (f(O, .) - aRf(O, ,)) = 0 
0v 

and such that Lf, taken in the sense of distributions, belongs to L2(R+; ~ ) .  
Existence and uniqueness of solutions of (100), (101) in a suitable sense 

will follow if we show that the operator - L  generates a contraction 
semigroup in the Hilbert space Lz(R+;~f ~) = L2(R+ • dxda(v)), and 
this in turn will follow if we show that for X > 0, L + X maps its domain 
onto L 2 ( R + ; ~ )  and has an inverse with norm < X-l ;  see Ref. 17. To 
prove this amounts to considering the stationary problem with A replaced 
by A + X, X > 0. This operator is invertible, so we may repeat the previous 
arguments with A + X in place of A 1 and S x = (A + X)- IT in place of S ~o 
conclude that for every suitable source function s there is a unique f in the 
domain of L such that (L + X)f= s. In this case, however, the series of 
identities in (93) leads to the inequality 

Therefore 

foo~176 + Af, f ) d x  < f0~176 f ) d x  (103) 

. , 1 / 2  
2 oo 2 ~ I.I a.< o I/I ax) (lO4) 

and (L + X) -1 has norm < X -I  as operator in L2 (R+ ;W ) .  
Note that this argument remains valid in the purely reflecting case 

a = 1. Roughly speaking, this means that when the initial distribution f0 
vanishes at x = oo, then there is for all time a unique solution f which also 
vanishes at x = oo and satisfies the BC at x = 0, but when a = 1 any 
constant can be added to the solution. 

. THE SLAB GEOMETRY 

We conclude with a condensed discussion of the one-dimensional slab 
geometry. With a slab of width 1 the problem is 

T ~ f  x + A f =  s, 0 < x < 1 

Q+ ( f  - aRf)ix= o = Q+ g 

Q_ ( f  - aRf)lx=o = Q_ g 

(105) 

(106) 
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Subtracting from f any solution of (105) alone, we reduce to 

T ~ f  x + A f =  0, 0 < x < 1 (107) 

and the BC (106) with different g. It is convenient to begin with the same 
problem for A 1 = A + P as above: 

T ' ~ f  + A , f =  0, 0 < x < 1 (108) 

Given h ~ ~f~s, define f :  [0, 1]-~ 2,U r by 

f ( x )  = U,(x)h = e-xaP + h + e(l-x)SP_ h (109) 

where B = S -  1. Then f given by (109) solves (108), and conversely every 
solution of (108) has the form (109). To satisfy (106) we need 

g = Q+ [ f ( 0 ) -  aRf(0)] + Q _ [ f ( 1 ) -  aRf(1)] 

= V [ ( I -  aRe -Isl) + V - ' W ( e  - w l -  a R ) ] h  

= Vrl,~h (110) 

Thus the question of existence and uniqueness of solutions to (107), (106) is 
the question where I" 1 ~ is an isomorphism of ~ s  onto itself. 

Note that [le-Wll'[ < 1, where [] I[ denotes the operator norm in H s . 
Also, R is unitary in SC's, so 1 - aRe -IBI is invertible for lal < 1. Thus 

= ( I +   Re-I't) (111) 

O~ = (e -wl - a R ) ( I -  aRe-Wl)  -1 (112) 

The adjoint of V - 1 W  is W ' ( V ' )  -1 and the analog of (68) shows that this 
operator has norm < 1, so we have II v -  IWll < 1. Therefore we will have 
shown invertibility of F1, ~ if we prove H O~ll < 1. Recall that Ru n = u =  and 
R r = rp_. It follows that O~ is self-adjoint in gq~s with two-dimen- 
sional invariant subspaces spanned by {Un,U_,} and {r ,r }. A direct 
calculation in each such subspace shows that the eigenvalues have absolute 
value < 1, so IIO~ll < 1 and Fl, ~ is invertible if [a[ < 1. 

Returning to (107), we obtain a solution 

f ( x )  = U(x)h  = % +  al(V - x) + ~ ane-X"Xun + ~] ane~'(1-X)un (113) 
n > 0  n < 0  

where h ~ ;~fs has the expansion 

h = a o + afv + ~]anU n (114) 

Again the BC (106) may be expressed by means of an operator F~ :~fPs 
~ f r -  Now Ul(x)h =-- U(x)h if h lies in the closed linear span of {u.}. 
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Therefore F,  differs from the invertible operator FI, ~ by an operator of 
rank = 2, the dimension of the complement of this span. Then F~ is 
invertible if and only if it is one-to-one. But for a solution f of (107), (106) 
we have 

0.< -fo I :>.. 

= (1 - a 2 ) f ? v i ( O , v )  2 d v -  (1 - aZ)fo~176 v) ' fv+  ]g]~ 

~< [gl 2, 0 < a < 1 (115) 

Thus g = 0 impliesf  constant, but for a # 1 the only constant satisfying the 
BC is then 0. For a = 1, any constant is allowed. Thus for 0 < a < 1, F~ is 
one-to-one and (107)-(106) has a unique solution. For a = 1, F,  has range 
of codimension 1, so (107), (106) has a solution if and only if the data 
satisfy a single linear constraint; if so, then any constant may be added to 
the solution. 

On a slab of length l the operator e -IBI in (110) is replaced by e -rIB[. 
This operator tends exponentially to 0 as l ~ m, so the solution of the slab 
problem tends rapidly to the solution of the problem for the semi-infinite 
medium. 

Finally, we note that the time dependent problem for the slab may 
now be handled easily by the method of Section 7. 
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APPENDIX: EQUIVALENCE OF THE NORMS ] Is AND I IT 

It is sufficient to prove 

IhlT -< mlhLs, h E ~ o  

In fact we may then deduce for h ~ ~ o  that 

]hi 2 = (Sh,  (P  + - P _  )h)A = (A ,Sh ,  (P  + - P _  )h) 

= ( T h ( P +  - P _ ) h )  = ( (Q+  - Q _ ) h , ( P +  - - P _ ) h ) T  

= [h]Tt(P + - - P - ) h I T  <~ m[h[T](P + - P _ ) h l s  = mlhlTIhls  

(A.1) 
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and so Ihls << mlhlT. To prove (A.1) we use the following adaptation of a 
lemma of Baouendi and Grisvard. (is) 

Lemma. There are linear operators X and Y, continuous as opera- 
tors in ; ~  and in ~ A ,  such that 

X h ( v ) = h ( v ) ,  v > 0 ,  h ~  (A.2) 

[TIX = Y* T on ~ A  (A.3) 

where Y* is the adjoint of Y as operator in ~ .  

There is of course a similar result with v > 0 in (A.2) replaced by 
v < 0. To prove the lemma we choose a cutoff function ~ E CI(~)  with 
r = 1 and cp(v) = 0 for Iv[/> 1. Let X be defined by 

X h ( v )  = h(v) ,  v o 
(A.4) 

= a h ( -  v ) ~ ( -  v) + 4 / 3 h ( - 2 v ) e p ( - 2 v ) ,  v < 0 

Here the constants ~ and /3 are to be determined. The requirement that 
X : ~ A  ~ ~ A  will be fulfilled if oL + 4/3 = 1. With this condition, X will be 
continuous. To satisfy (A.4) we need 

r * h ( v )  = h(v),  v > 0 

Y * h ( v ) = a h ( - v ) e p ( - v ) + 2 / 3 h ( - 2 v ) e p ( - 2 v ) ,  v < 0  (A.5) 

An easy computation shows that the adjoint Y is given by 

Yh(v)  = O, v < 0 
(A.6) 

Yh(v)  = h(v)  + a ~ ( v ) h ( - v )  + / 3 % ( v ) h ( -  �89 v > 0  

where r r189 2 -  �89 For Y to map ~ A  to ~ A  we need 

1 + c~ + /3  = 0. Thus we prove the lemma by taking c~ = - 5 / 3 , / 3  = 2/3 .  
To prove (A.1) it is enough to consider the two cases: h E ~ A  and 

P+ h = h or P_  h = h. We assume P+ h = h. The range of S is dense, so we 
may assume h E S ( ~ A  ). Define the ~ A  -valued function u by 

u(t)  = e-ztS-~h, t >1 0 (A.7) 

This makes sense since P+ h = h (for P h = h we take t < 0); moreover 
u(t) is in the range of S for all t >/0, the function u is strongly differentia- 
ble in ~ A ,  and 

T du = - T S - l u  = - A l r t  (A.8) 
dt 

Also, ]u(t)k 4 --->0 as t--~ ~ .  
We want to estimate 

Ihl  = f fvlh(vl2dv 
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We estimate the integral over v > 0; the other estimation uses the other 
form of the lemma. Using (A.2) we have 

f o ~ V h ( v ) 2 d o ( v )  <~ IXhl~ 

N o w  as t--~ ~ ,  

Igu(t)l ~ < ITXu(t)l ISu(t)l < flu(t)[ ~ ~ 0  
Therefore 

1 [ghlZT = 1 L ~ d [gu(t)12dt 

= - fo ~ (I VlXu'( t ) ,Xu( t ) )  dr= - fo ~ ( r* ~u'(,), xu(t))  d, 

= fo ~ (A ,u(~), rXu(t) )d ,=  fo~(U, VXu)~ d, 

C ~ e -2tS-  1 C{hl2s 

we have used the identity 

fo ~e- ,S  dt= B -1  
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